はじめに
アパレルサイトにおいて正確にサイズをレコメンドすることは、顧客満足度の向上において重要な役割を果たします。私達Virutsizeは、商品のサイズデータと、お客様からお預かりしている身体情報をもとにフィットするサイズとレコメンドする、バーチャル試着サービス「Virtusize」を提供しており、お客様それぞれの身体に適したサイズをレコメンドするため、社内データサイエンスチームが日々検証し、精度向上のためのブラッシュアップを定期的に行っています。
今回は、レコメンド精度改善の一例として、体格の良いユーザー(高BMIユーザー)に対する精度改善の一連の流れを大公開しちゃいます!
モデルサイズ比較法
弊社で提供しているレコメンドロジックの種類の一つに、モデルとのサイズ比較(モデルサイズ比較法)があります。
モデルサイズ比較法とは、私達のクライアント様から提供いただくモデル情報を活用し、お客様へのサイズレコメンドを行う方法です。モデルの身体情報とそのモデルが着用している商品情報をもとにロジックを組み立てているため、例えばふわっとした服やローカットの服、ルーズな着方を想定した服など、ニュアンスが異なる服に対してサイズレコメンドをする際に、特に優れています。
高BMIユーザーにモデルサイズ比較法は妥当?
今回、とある計測の中で、モデルサイズ比較方における体格の良いユーザー(高BMIユーザー)のサイズマッチ率※1が一般的な体型のユーザーに比べて低いことが判明し、レコメンドロジックの見直しを実施することとなりました。
このグラフを見ると、BMIが28以上になるほど、サイズマッチ率が減少しています。モデルサイズ比較法はBMI28以上のユーザーにはあまり適さないレコメンドロジックであることが見えてきました。
ここで、モデルサイズ比較法に用いられる商品ページの「モデル情報」を詳しく見てみると、ほとんどが「S」や「M」、「L」などのアイテムを着用した、いわゆる一般的な標準体型であり、高BMIユーザーが着用するような「2XL」や「3XL」以上のサイズを実際に着たモデル情報はそう多くありません。たしかに、2XL以上の大きいサイズもすべて網羅されるようにモデルを用意することはコストもかかるため、ショップ側にとっても現実的ではありません。
このように、弊社で取得できるモデル情報の幅が限定的であることから、社内では高BMIユーザーにはモデルサイズ比較法ではない別のロジックを適用させる必要がある、という結論に至りました。ただ、冒頭でも話した通り、モデルサイズ比較法は一般的な体型のユーザーに対しては非常に優れたレコメンドロジックであり、サイト全体のロジックを一括で変更することは、最終的にサイト全体のロジック精度の向上には繋がりません。
改善に向けた検証とその結果
そこで、社内データサイエンスチームでは一般的な体型のユーザーにはサイズ比較法を適用し、高BMIユーザーには別のロジックを適用させるための検証が進められました。最終的に、特定のBMIユーザーに対してのみ、モデルサイズ比較法を適用せず別のロジックを適用させる仕組みを開発することができました。
適用後のレポートでは、BMI28以上の高BMIユーザーのサイズマッチ率※1は、ブランド単位で最大20%もの改善が見られ、全ブランドの平均を見ても5.81%ポイントもの精度向上が見られています。
最後に
このように、私達は日頃から「より正確なサイズレコメンド」を目指して検証を重ねています。今回は高BMIユーザーに対する精度改善の一連の流れを紹介しましたが、まだまだ一例に過ぎません。一般的な体型のユーザーだけでなく、より多くの方に安心した購買体験をお届けできるよう様々な課題に焦点を当て、一つ一つ丁寧に最適化を進めています。
Virtusizeはこれからも成長を続けてまいります。ぜひご期待ください。
※1サイズマッチ率:Virtusizeレコメンド後に購入された商品のうち、Virtusizeが1番におすすめしたサイズが購入された割合であり、弊社においてレコメンドロジックの精度を測る指標となる値。
はじめに
アパレルサイトにおいて正確にサイズをレコメンドすることは、顧客満足度の向上において重要な役割を果たします。私達Virutsizeは、商品のサイズデータと、お客様からお預かりしている身体情報をもとにフィットするサイズとレコメンドする、バーチャル試着サービス「Virtusize」を提供しており、お客様それぞれの身体に適したサイズをレコメンドするため、社内データサイエンスチームが日々検証し、精度向上のためのブラッシュアップを定期的に行っています。
今回は、レコメンド精度改善の一例として、体格の良いユーザー(高BMIユーザー)に対する精度改善の一連の流れを大公開しちゃいます!
モデルサイズ比較法
弊社で提供しているレコメンドロジックの種類の一つに、モデルとのサイズ比較(モデルサイズ比較法)があります。
モデルサイズ比較法とは、私達のクライアント様から提供いただくモデル情報を活用し、お客様へのサイズレコメンドを行う方法です。モデルの身体情報とそのモデルが着用している商品情報をもとにロジックを組み立てているため、例えばふわっとした服やローカットの服、ルーズな着方を想定した服など、ニュアンスが異なる服に対してサイズレコメンドをする際に、特に優れています。
高BMIユーザーにモデルサイズ比較法は妥当?
今回、とある計測の中で、モデルサイズ比較方における体格の良いユーザー(高BMIユーザー)のサイズマッチ率※1が一般的な体型のユーザーに比べて低いことが判明し、レコメンドロジックの見直しを実施することとなりました。
このグラフを見ると、BMIが28以上になるほど、サイズマッチ率が減少しています。モデルサイズ比較法はBMI28以上のユーザーにはあまり適さないレコメンドロジックであることが見えてきました。
ここで、モデルサイズ比較法に用いられる商品ページの「モデル情報」を詳しく見てみると、ほとんどが「S」や「M」、「L」などのアイテムを着用した、いわゆる一般的な標準体型であり、高BMIユーザーが着用するような「2XL」や「3XL」以上のサイズを実際に着たモデル情報はそう多くありません。たしかに、2XL以上の大きいサイズもすべて網羅されるようにモデルを用意することはコストもかかるため、ショップ側にとっても現実的ではありません。
このように、弊社で取得できるモデル情報の幅が限定的であることから、社内では高BMIユーザーにはモデルサイズ比較法ではない別のロジックを適用させる必要がある、という結論に至りました。ただ、冒頭でも話した通り、モデルサイズ比較法は一般的な体型のユーザーに対しては非常に優れたレコメンドロジックであり、サイト全体のロジックを一括で変更することは、最終的にサイト全体のロジック精度の向上には繋がりません。
改善に向けた検証とその結果
そこで、社内データサイエンスチームでは一般的な体型のユーザーにはサイズ比較法を適用し、高BMIユーザーには別のロジックを適用させるための検証が進められました。最終的に、特定のBMIユーザーに対してのみ、モデルサイズ比較法を適用せず別のロジックを適用させる仕組みを開発することができました。
適用後のレポートでは、BMI28以上の高BMIユーザーのサイズマッチ率※1は、ブランド単位で最大20%もの改善が見られ、全ブランドの平均を見ても5.81%ポイントもの精度向上が見られています。
最後に
このように、私達は日頃から「より正確なサイズレコメンド」を目指して検証を重ねています。今回は高BMIユーザーに対する精度改善の一連の流れを紹介しましたが、まだまだ一例に過ぎません。一般的な体型のユーザーだけでなく、より多くの方に安心した購買体験をお届けできるよう様々な課題に焦点を当て、一つ一つ丁寧に最適化を進めています。
Virtusizeはこれからも成長を続けてまいります。ぜひご期待ください。
※1サイズマッチ率:Virtusizeレコメンド後に購入された商品のうち、Virtusizeが1番におすすめしたサイズが購入された割合であり、弊社においてレコメンドロジックの精度を測る指標となる値。
はじめに
アパレルサイトにおいて正確にサイズをレコメンドすることは、顧客満足度の向上において重要な役割を果たします。私達Virutsizeは、商品のサイズデータと、お客様からお預かりしている身体情報をもとにフィットするサイズとレコメンドする、バーチャル試着サービス「Virtusize」を提供しており、お客様それぞれの身体に適したサイズをレコメンドするため、社内データサイエンスチームが日々検証し、精度向上のためのブラッシュアップを定期的に行っています。
今回は、レコメンド精度改善の一例として、体格の良いユーザー(高BMIユーザー)に対する精度改善の一連の流れを大公開しちゃいます!
モデルサイズ比較法
弊社で提供しているレコメンドロジックの種類の一つに、モデルとのサイズ比較(モデルサイズ比較法)があります。
モデルサイズ比較法とは、私達のクライアント様から提供いただくモデル情報を活用し、お客様へのサイズレコメンドを行う方法です。モデルの身体情報とそのモデルが着用している商品情報をもとにロジックを組み立てているため、例えばふわっとした服やローカットの服、ルーズな着方を想定した服など、ニュアンスが異なる服に対してサイズレコメンドをする際に、特に優れています。
高BMIユーザーにモデルサイズ比較法は妥当?
今回、とある計測の中で、モデルサイズ比較方における体格の良いユーザー(高BMIユーザー)のサイズマッチ率※1が一般的な体型のユーザーに比べて低いことが判明し、レコメンドロジックの見直しを実施することとなりました。
このグラフを見ると、BMIが28以上になるほど、サイズマッチ率が減少しています。モデルサイズ比較法はBMI28以上のユーザーにはあまり適さないレコメンドロジックであることが見えてきました。
ここで、モデルサイズ比較法に用いられる商品ページの「モデル情報」を詳しく見てみると、ほとんどが「S」や「M」、「L」などのアイテムを着用した、いわゆる一般的な標準体型であり、高BMIユーザーが着用するような「2XL」や「3XL」以上のサイズを実際に着たモデル情報はそう多くありません。たしかに、2XL以上の大きいサイズもすべて網羅されるようにモデルを用意することはコストもかかるため、ショップ側にとっても現実的ではありません。
このように、弊社で取得できるモデル情報の幅が限定的であることから、社内では高BMIユーザーにはモデルサイズ比較法ではない別のロジックを適用させる必要がある、という結論に至りました。ただ、冒頭でも話した通り、モデルサイズ比較法は一般的な体型のユーザーに対しては非常に優れたレコメンドロジックであり、サイト全体のロジックを一括で変更することは、最終的にサイト全体のロジック精度の向上には繋がりません。
改善に向けた検証とその結果
そこで、社内データサイエンスチームでは一般的な体型のユーザーにはサイズ比較法を適用し、高BMIユーザーには別のロジックを適用させるための検証が進められました。最終的に、特定のBMIユーザーに対してのみ、モデルサイズ比較法を適用せず別のロジックを適用させる仕組みを開発することができました。
適用後のレポートでは、BMI28以上の高BMIユーザーのサイズマッチ率※1は、ブランド単位で最大20%もの改善が見られ、全ブランドの平均を見ても5.81%ポイントもの精度向上が見られています。
最後に
このように、私達は日頃から「より正確なサイズレコメンド」を目指して検証を重ねています。今回は高BMIユーザーに対する精度改善の一連の流れを紹介しましたが、まだまだ一例に過ぎません。一般的な体型のユーザーだけでなく、より多くの方に安心した購買体験をお届けできるよう様々な課題に焦点を当て、一つ一つ丁寧に最適化を進めています。
Virtusizeはこれからも成長を続けてまいります。ぜひご期待ください。
※1サイズマッチ率:Virtusizeレコメンド後に購入された商品のうち、Virtusizeが1番におすすめしたサイズが購入された割合であり、弊社においてレコメンドロジックの精度を測る指標となる値。